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Abstract

Expressions are derived for the expectation and uncertainty of body burdens and
doses calculated from a lincar model of environmental transport and human metabolism in
terms of expectation and uncertainty in soil concentrations. The soil concentrations were
assumed to be discrete stochastic random variables. Three cases are compared (o determine
the relationship of the expectations and uncertainties under varying assumptions. This
comparison allows us (o set various input statistics in the simplest case to reproduce the
output statistics of the more complex cases. The first case and the simplest (Highly
Correlated) was for soil concentrations constant over the simulation period, T. In the two
lime-varying cases, it was assumed that N discrete samples were made of the soil
concentration; each sample was constant during each time interval of length 7/N. In one
case (Discrete Random), the samples were assumed to be uncorrelated, and in the other
(Discrete Autoregressive), they were assumed to be partially correlated with autocorrelation
coefficient a. The expectation values of the body burdens and doses in the Highly
Correlated case were identical 1o those in the Discrete Random case. The uncertainties of
the body burdens and the doses in Highly Correlated case were identical in the limit of
Rapid Metabolism to those of the Discrete Random case. In the limit of Slow Metabolism,
the uncertainties of the body burdens and the doses in the Highly Correlated case were N2
and (3N/4)172, respectively, greater than those in the Discrete Random case. So to force
the body burden or dose in the Highly Correlated case (constant input) to have the same
statistics as the Discrete Random case requires that the soil concentration uncertainty be
reduced by N2 or (3N/4)1/2, respectively. To force the Highly Correlated case to
reproduce the expectation value of either the body burden in both the Slow and Rapid
Metabolism limits or the dose in the Slow Metabolism and slow decay limit for the Discrete
Autoregressive case requires setting the mean of the soil concentration 10 &y, (1-a)~! where

€ is the mean of the random component of the Autoregressive samples. To force the



Highly Correlated case to reproduce the uncertainty of the body burden in the Discrete
Autoregressive case requires setting the uncertainty of the soil concentration to
oe (1-a?)~"2 in the Rapid Metabolism limit and to o¢ [(1-@)(NV2)]-! in the Slow
Metabolism limit. To force the Highly Correlated case to reproduce the uncertainty of the
dose in the Discrete Autoregressive case requires setting the uncertainty of the soil concen-
tration 10 Oy in the Rapid Metabolism and rapid decay limit and to ¢ [(1-@)(NV2)]}-!
[2/(3172)] in the Slow Metabolism limit. That is, it is found that increasing the number of
sampling periods decreases the uncertainty and increasing the autocorrelation increases the
uncertainty. In these expressions, O is the uncertainty of the random component of the

Autoregressive soil exposures and oy is the uncertainty of the initial exposure.

Introduction

Uncertainty in the fate and effects of radionuclides and other environmental
pollutants is an important consideration in any assessment of risk. This paper considers the
problem of the dependence of the output of models for computing body burdens of
radionuclides and the associated dose on the uncertainty in the inputs (or forcing function) .
If the inputs are constant in time, this is not a difficult task because of the linear nature of
the problem of exposure, body burden, and dose. However, this paper considers the case
that the inputs or exposure may change over time with some uncertainty. This case
requires that care must be used in the analysis.

There have been several discussions in the literature of the related problem of
uncertainty in constant parameters of models for computing body burden of radionuclides
(e.g., Garten 1980, Marivoet and Van Bosstraeten 1988, Breshears et al. 1989). Many
authors have recommended a Monte Carlo approach to this problem, whether as a simple
random design (Matthies et al. 1981, O'Neill et al. 1981, Schwarz and Hoffman 1980,

Kercher and Anspaugh 1991) or as a stratified design such as Latin hypercube (Iman et al.



1981, Helton and Iman 1982, Iman and Shon;ncan'er 1984). In the Monte Carlo
approach, each parameter of the model is sampled from its distribution once before each
run. By running the model many times, a distribution of the output results may be
obtained. It is important to note that in most previous dose assessment schemes, each
parameler is sampled only once per run. That is, the parameter is assumed to be constant
during the run. A notable exception is the work of Unnikrishnan and Prasad (1987), who
considered the case of continuous random fluctuations in air activity inputs in lung-model
calculations. Their analysis will be used in our calculations in a companion paper on
uncertainties due to continuous stochastic inputs (Kercher 1992).

The goal in this discussion is to show how the distribution of constant inputs may
be chosen so that the resulting uncertainty in the distribution of outputs is the same as the
distribution of outputs in the case of uncertainties in the time-varying input. For the
purposes of our analysis, let us ignore the uncertainty in the other model parameters.
However, in a specific assessment of a specific situation using the Monte Carlo method,
one would include the uncertainty in model paramelters as well as model inputs or source
terms.

The analysis to follow was motivated by considerations of the model developed by
Martin and Bloom (1980) for the Nevada Applied Ecology Group (NAEG) for application
to the Nevada Test Site (NTS). For the NAEG model, Martin and Bloom assumed that a
reference man (ICRP 1975) was living in a contaminated desert environment (grassland-
shrubland vegeltation), breathing air contaminated by soil resuspension, and eating
vegetables that he had grown himself in the contaminated environment and milk and beef
from cattle pastured in the same contaminated environment. All concentrations of
radionuclides in air and foodstuffs are modeled as proportional to the soil concentration.
There are many sources of variation in the man’s intake including hour-to-hour variation in
inhalation due to fluctuations in wind or movements on the farm; day-to-day variation in

ingestion of differing types of foodstuffs or of foodstuffs having within-type variation due



to being grown in different parts of the farm; month-to-month variation due to differences
in weather throughout the year or differences in the Man’s activities at the farm; year-to-
year vanations due to differences in weather and the Man's activities; and decade-to-decade
variations, which might consist of the relocations of the Man’s living site. In this paper, let
us consider only discrete fluctuations, and these will be classified into three cases: Highly
Correlated (or Constant Input), Random, and Autoregressive. The continuous case is
discussed in a companion document (Kercher 1992). For the Random and Autoregressive
cases, let us assume that the simulation period is divided into N intervals of equal duration.
In the Highly Correlated case, the simulation period itself is one interval and undivided. In
all three cases, let us assume that the variation within intervals is negligible. The only
significant variation occurs between intervals at the transition from one interval to another.
That is, the distribution of the random variable is sampled once at the beginning of each
time interval. In the Random case, the soil concentrations from one interval to the next are
uncorrelated. In the Autoregressive case, the soil concentration from one interval to the
next have correlation coefficient a. For example, for the man living on the farm, it might
be imagined that the contamination on the farm is relatively homogeneous but that there is
regional variation that is sampled by the Man's periodic relocation. In the Highly
Correlated case, the initial location and exposures are decided upon (sampled) and then for
the duration of the simulation the exposure remains constant. The Highly Correlated case
is the easiest to simulate.

Our goals will be to compare the three cases by relating the body burdens, doses,
and their uncertainties to each other. As a concomitant goal, the inputs for the Highly
Correlated case will be determined such that the outputs reproduce the expectation and
uncertainties of the Random and Autoregressive cases. For example, it will be shown how
to chose the expectation and uncertainty in the soil concentration so the Highly Correlated
case would produce the expectation and uncertainty of the body burden in the Random

case. These comparisons will be made for the limits of Rapid and Slow Metabolism to



simplify the algebra. However, it should be emphasized that the solutions that are given
here could be used to make comparisons for arbitrary metabolism and radioactive decay
rates. Closed-form solutions are given to the general problem in each of the three cases.
These solutions could be used numerically to relate expectations and uncertainties between
the three cases for specific radionuclides.

The basic metabolism model for man of the International Commission on
Radiological Protection (ICRP) (ICRP 1979) calculates body burdens of a particular

radionuclide with the equation

i ayyj +Filt (1)

where the a;j are constant coefficients of transfers from compartment j to (day'1), y; is the
activity burden of the internal compartment i (Bq), and F;(r) is the intake (inhalation or
ingestion) of the radionuclide to compartment i (Bq day-!), and n is the number of
compartments in the man model. The exception to this model is that of the alkaline earths
(ICRP 1973) in which the a;j are time-dependent. In the case of only one compartment and
for F{r) arandom variable, eq. | is the Langevin equation, a discussion of its subtleties can
be found in standard references on stochastic processes (e.g., Wang and Uhlenbeck 1945,
Prabhu 1965). In our discussion that follows, let us simplify the mathematical details by
assuming the matrix coefficients are constant, but suitable generalizations can be made for
the time-dependent case. After eq. | is solved, the cumulative internal dose for the kth

organ Hy(r) (Sv) is then given formally by

n

. HYT) =), f By yf1)dr (2)

Jj=1



where the By (Sv day'! Bq -1) are proportional to the SEE coefTicients (ICRP 1979) for the
kth target, jth source organ. So that one may write compact expressions, matrix notation

will be used; for example eq. | becomes

dy=a'y+F) (3)

where the a;j are the matrix elements of A’, y;(t) the vector element of y, and F(1) the'
vector elements of F,

The discussion in ICRP (1979) concentrates on an exposition of the A' matrix.
Other studies concentrate on radionuclide transport in the environment and delivery to man,
i.e., the forcing function F(r) (Whicker et al. 1990, Whicker and Kirchner 1987, Hoffman
et al. 1984). Some modeling efforts model both the A’ matrix and the F vector (Martin
and Bloom 1980, Kercher and Anspaugh 1991). Some uncertainty analyses have
concentrated on uncertainties in A' (Schwarz and Dunning 1982), whereas others
concentrate on uncertainties in F (Breshears et al. 1989, Unnikrishnan and Prasad 1987).
In the discussions that follow, let us restrict our analysis of uncertainties to time-varying,

stochastic F.
Solutions to the Body Burden Equation

For constant matrix A', the formal solution to eq. 1 is

y(T) = eAT j e-ATF()dt + AT y(0) (4)

For our discussion, let us consider the type of model in which the form of F;(r) is given by

F{1)= G{1) 1) (5)



where G; is the ith component of the vector transfer function that models the transfer from
the soil-to-man compartment i and ¢(r) is the concentration of the radionuclide at the soil
surface at time 1. Models used by Kirchner et al. (1983), Kirchner and Whicker (1984),
Martin and Bloom (1980), and Kercher and Anspaugh (1991) are examples of this type.
For convenience, let us suppose that (1) G is constant in time and (2) all radionuclides

were deposited at time =0, then let us assume that

cdf) = C{1) e (6)

where Cs(t) is the time dependence of exposure independent of radioactive decay and A is
the radioactive decay rate of the radionuclide. Introduce a new matrix A equal to A'+ Al
where I is the identity matrix. See Appendix A for a discussion of the properties of the
matrices A and A'. Let us also assume y(0) = 0. Using egs. S, 6, and A.3, then eq. 4
becomes

y(T) = e‘lTeATI e A G Cf)dr (7a)

For some of the calculations to follow it is more convenient to write eq. 7a as

T
ydM= ), ‘f’kjei"rf e~(%+ 2k ¥i' G C)de (7b)
jl=1 o

where the transformation from eq. 7a to eq. 7b is by use of eq. A.9. (Appendix A contains

the definitions of A; and ¥})). ‘Equations S and 7 suggest that a sampling process is
occurring in which a man continually samples his soil environment by his exposure to the

radionuclide over time T. To get an idea of the uncertainty in dose due to this sampling,



one should consider an ensemble of such men, each sampling his environment over time T.
As noted above, there are of course uncertainties in A and G and appropriate Monte Carlo
methods for analyzing those uncertainties should be used (Iman and Shortencarier 1984).
In the discussion here, let us concentrate on the uncertainties in Cs(f).

In the discussion to follow, Cs(r) is treated as a random variable. Appendix B
states the mathematical properties of the functions used to characterize such distributions.
Let us consider three separate cases: Highly Correlated, Discrete Random, and Discrete
Discrete Autoregressive ime series. The first two cases are special cases or limits of the

third, but, in the interests of clarity of expression, let us discuss each of them separately.

Highly Correlated Case (Constant Input)

In the Highly Correlated case, the distribution of the random variable C(t) may be
sampled by the man several times over the time domain of simulation {0,7], but let us
assume for this case that, each time it is sampled, the value chosen is so close to the

original value chosen that one may take as a good approximation that

Cd= CH0) (8)

As a result, the most important sampling is the first sampling, and it occurs at time ¢=0.
This case might correspond to the situation assumed by Martin and Bloom (1980) in which
the radionuclide is spread over the landscape as a smooth, slowly varying spatial function
and once the man chooses a location, he remains in that location and grows his food in that
location for the entire time of simulation. So the solution to eq. 1 becomes for constant

P

matrix A'



y(T) = e‘“'C,(O)eATj e A G dr (9)

or

y(T)= eATC{0)(eAT-T)A-' G (10)

To characterize the distnbutions, the expectation function E and the standard deviation D
(for the uncertainty) will be used with the usual definitions (e.g., Cramer 1955).
(Appendix B provides a discussion of the properties of these statistics.) Using eq. B.1
through B.6, one finds the mean and standard deviation of yi(r) for the Highly Correlated

case to be

Hyu(T) = e*TBCAO)[(eAT- 1) A1 Gl = eATcuc(eAT-1) A G (11)
and

DyxT) = e*TD(CLO)[(AT-1)A-! Gl = e*T auc[(eAT-T1) A1 Gl (12)

where cyc is the mean of Cs(0) and oy is the standard deviation.
Calculate the cumulative dose at time T by integrating eq. 10 in eq. 2. The

expectation and standard deviation are found as before:

H{T)= C{0) {B A—l{(A Ay Yela-drZ ) + 8_1;_ l] G} (13a)
k

HHLT) = cne {B A“[(A A ela-dr )« e'i_ IJ G} (13b)
k

e AT - 1]

DHYT) = ouc {B A [(A A ela-dr— 1) + n

G} (13c)
k

Discrete Random Case



For both the Discrete Random and Discrete Autoregressive cases, let us suppose
that the ume period of simulation T is divided into N time intervals of length D=T/N. Let
us suppose that for each of the N time intervals the sampled soil concentration Cg(f) is
highly correlated (constant) during that time interval but is random from one time interval to
the next. That is, one assumes that for practical purposes C(r) is constant C; during the ith

time interval. So eq. 7a integrates to

y(T)= eATeAT(- A-l)(l—eAA)[i Ci e-AiA] G (14)

i=1

For the Discrete Random case, let us assume that for each of the N time intervals,
the C; is a random variable independent (uncorrelated) of any of the other C;'s. For
example, if the spatial distribution of the radionuclide were weakly varying on the
landscape and the man were to move N times during the simulation period, then this would
approximate the conditions for the Discrete Random case. Each move would have to result
in a resampling of the environment independent of previous samples. Thus, the man could
not move close by to his previous position, but instead, would have to move a large,
random distance away. In the case of occupational exposure, if the man's work
assignment were to change N times over his working life with equal time intervals for each
assignment, one would approximate the Discrete Random case conditions. Alternatively, if
conditions on the landscape were to change at random from one small time interval to the
next, say, day to day, or month to month, one might also approximate the conditions for
the Discrete Random case. A special case of changing environmental conditions is the
seasonal effect that occurs at the beginning of each of the four seasons of the year; the
seasonal effect results in a chan'ge in climatic conditions and produces a new exposure
(sampling) that then remains constant over the season. (In the seasonal case, there is the

complication that four different distributions are being sampled, so the results to follow
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must be generalized before they can be applied.) Only nonseasonal effects will be
considered here.

To characterize the distribution of y, take the expectation of eq. 14 to get

Hyd(T))= e-AT cg[A-1 (AT~ 1) Gl (15)

Details of the calculation are in Appendix C.
Now let us consider the standard deviation for the Discrete Random case. Begin

with eq. 7b and employ the Discrete Random case assumptions outlined above to get

D¥yy)= ok e-2AT z n{/qufhme-(;u#-)T'Pﬁ' ‘{’,;,l G G,

Jhmr=1
(l—e‘“%‘Xl—e‘“-A) (l_e(#,-w-)?') (16)
Hj Hm (e‘(#i*l‘m)d— l)

See Appendix C for details.
The dose calculation of the Discrete Random case is performed by integrating either

eq. 14 or C.3bin eq. 2. to find

i)=Y, €. [Bl-A-oa s [ea(1-e1) & - (1ens)coihav e-nsf | 17
i=1

with o {B (_A—l)(_A+A,)_l[(l—e'lr):%_(l_eAT)e—u ]G}k (17b)

and

11



- -1
DZ(H)= 0122 z Bk} Bkh J lPhp llulml "qu Gm Gq

jd.hp.m.q H up(}lﬁl
—21AN A
(l_elA)z HiHp - +(1_€ )ﬂl (l—e‘“»A) 4;1,+1)AN M
A 2 e224_| A e(l‘l‘r)“—l
1—elu-)av
ela-uda_

+ (l—e‘”'A)e—(ﬂu l)AN(l—e—ﬂy-A) e—(#, + l)AN 1 (ke AN
e(+m)a_]

(17c)
+ (l—eM)l—f{’—(l—e‘#ﬂ)e‘(#‘* R)an

Comparison of the Discrete Random and Highly Correlated Cases

In comparing the Discrete Random and Highly Correlated Cases, let us first
consider the body burdens. Note that eq. 15 is exactly the same form for E(yy) that was

determined for the Highly Correlated case, eq. 11. Thus for E(Cs(0)) = E(C}) or cyc =

CR
E(yt, Highly Correlated) = E(Vk, Random) (18a)

Similarly, the expectation of the dose E(H}) for the Highly Correlated case, eq. 13b, is
exactly the same as the expectation of the dose E(H}) for the Discrete Random case,

eq. 17b, if it is assumed that cyc = cp
E(Hk. Highly Corrclaled) = E(Hk Random) (18b)
To compare eq. 16 and 17c, the uncertainties of the body burden and the dose,
respectively, in the Discrete Random case with eq. 12 and 13c, the uncertainties in the

Highly Correlated case, consider these equations in two opposite and extreme limits. The

first limit is for extremely rapid metabolism of the radionuclide in all of man's compartment
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organs; the second limit is for extremely slow metabolism in all compartments. These
limits are taken for purposes of simplifying the companson of these uncertaintes. In any
particular situation regarding a particular radionuclide, one would use the equations directly
lo make a comparison or to determine the adjustments necessary to simulate discrete

fluctuations with a constant input.
Rapid Metabolism Limit

First, consider the variance of the body burdens. In the Rapid Metabolism limit, all
Ui are large such that i; A >> 1. In this limit, eq. 16 becomes

D{Yt. Random) = O e-*T[-A~! G]; (19)
See Appendix C for details. In the same limit, eq. 12 goes to
D(vk, Highty Correlased) = OHc €% 7[-A-! Gl (20)
So in the limit of Rapid Metabolism and for og = oyc¢
D(yx, Random) = D(Yk. Highly Correlated) (21)
Next consider the variance of the dose. To compare the variance of the dose in the

Highly Correlated case with the Discrete Random case in the Rapid Metabolism limit, let us

also assume that the decay is rapid ( AA >> 1 ). Then the variance of the Highly

Correlated dose, eq. 13c, a;;proaches

D(Hk. Highly Correlaled) - 'qg"c [B (_A +A)_l G]l (22)

13



In this limit, the variance of the Discrete Random Dose, eq. 17 also approaches eq. 22 if
Og = Oyc . Thus

D(Hk. Random) = D(HL Highly Corrclaled) (23)
Slow Metabolism Limit

Now consider the limit of Slow Metabolism. In this limit, all the y; are small, so

Ui T << 1. First, examine the uncertainty in the body burdens. In Appendix C, this limit

is found to be

AT
D{yk. Random) = %— G (24)

In the Slow Metabolism limit, the Highly Correlated uncertainty (eq. 12) becomes
D(yk. Highty Correlased) = Orc T e 2T Gy (25)
Thus, in the limit of Slow Metabolism and for og = Oy

D i rrelate
D(.Vk. Random) = (yk' H gh{%-Co elat d) (26)

Alternatively, one could force
D(yk. Random) = D(,Vk. Highly Correlated) (27)

by choosing oyc so that
Ouc = % (28)

14



Consider next the uncentainty in the dose. In addition to the Slow Metabolism limit,

let us also assume that AT << 1. In this limit, the uncertainty of the dose in the Discrete

Random case (eq.17) approaches

qu. Random) — ORr [B G]l % (29)

In this same limit, the uncertainty of the dose for the Highly Correlated case, eq. 13c,

approaches
2
D(H}, Highly Correlased) = Onc[B Gl 1;— (30)

So for Slow Metabolism and decay,

D(Hk, Random) = ;UHBE ﬁ D(Hk. Highly Correlaud) (3 1)

Equation 31 implies that in order to force equality

D(“k, Random) = D(“k. Highly Corrclaled) (32)
one must choose
__2
OHC = =50, 33
HC AN R (33)

Comparing eq. 28 and 33, one sees that oyc can be adjusted to reproduce the uncertainty in

the body burdens or the uncertainty in the dose but not both simultaneously.

15



Discrete Autoregressive Case

In the final case, the Discrete Autoregressive case, the closed form expression for
yi. will be derived for the simplest linear autocorrelation between successive samples. The
derived equations will contain the Discrete Random case and Highly Correlated case as
special cases. The most general linear model of random variable X for time series X, the

Autoregressive-Moving Average (ARMA) model (Kendall 1976, Chatfield 1975), is given
by

Xi=a1 X1+ + Xy m+ P+ B Zi v+ ...+ B2y (34)

where X; is the random variable at time ¢ = i and Z; is another, independent random variable
at time ¢ = i. The terms with the o's as coefficients make up the autoregressive part of the
expression and the terms with the s as coefficients make up the moving average part of
the expression. For purposes of exposition here, the simplest autoregressive model is
sufficient. So consider the case of a first-order autoregression (also known as the Markov

scheme):

i=a X1+ 4 (35a)

or for the C; in eqs. 14 and C.3b
C,'=aC,'_|+ E; (35b)

where ¢ is a random variable independent of Cy and ¢ for i # j. Note that it is well known
that the autocorrelation function between C; and Cj4 is ak. In particular, the
autocorrelation between nefghboring time intervals is @ This is shown in Appendix C for
our particular assumptions. Applying eq. 35b to the C;.] term in eq. 35b successively i-2

times, one finds

16



i-2 i
C,-=a“'Cl+Zafs,-_j=a“'Cl+Za"f£j i>1 (36)
Jj=0 j=2

First, consider the body burdens. In the Discrete Autoregressive case, the equation

for the body burden output (eq. 14) becomes

i-2
y(T)=e* Te”(—A“)(l - eAA) {C[ e~Ad4 i [ai"Cl +Y o e,-__,-]e“d "} G (37)

i=2 j=0
Calculate the expectation value of eq. 37 using E(C1) = c4 and E(&;.j) = €m to get

Hyr)= e—A T{eA(—A—l)(l—eAA)e—AA [cA (l—aN e—AT)(l - ae—AA)_l+

18__ma ((C—AA —e—AT)(l—e—AA)_l_ (ae—AA —aN e—ATXl_a e-—AA)_l)] G

(38)

k

Note that in the limit @ = 0, &n — c4, and c4 — cg, one recovers eq. 15 for the Discrete
Random case. Also, note thatin the limit a 5 1, g5 — 0, and c4 — cyc, one recovers
eq. 11 for the Highly Correlated case. However, for an arbitrary value of &m/c4 and
0 < ax < 1, the expected value in the Discrete Autoregressive case differs from the
Discrete Random and Highly Correlated cases.

To calculate the uncertainty in the distribution of yj in the Discrete Autoregressive

case, begin with eq. C.3b and manipulate as shown in Appendix E to get

17



Dz(yk)z[e-”e'* T(1-e-Ad)A-1(1- aMe-AT)(1-ae-A4)" GE o2

4 HA — p—HA .
vop D, Wye esT Wi A AT ! G,,l ‘. ey 4
Hi B (- aerafl - cend)
elti+ 1) 8 _ o(ui+ )T o ett — aNesd
—- e#,
1 -elti+m)a el _
T _ N ou 2 _ 2N
enr @l 2@ |y pyr &0 (39)
etA ~ a l-a

Note that in the limit @ — 0 and ¢ — 04, one recovers eq. 16 for the Discrete Random.
case. Also, note that in the limit @ — 1 and o¢ — 0, one recovers eq. 12 for the Highly
Correlated case. However, for an arbitrary value of o/04 and 0 < a < 1, the expected
value of D2 in the Discrete Autoregressive case differs from the Discrete Random and
Highly Correlated cases.

Now consider the calculation of the dose for the Discrete Autoregressive case.

Integrate either eq. 37 or E.3c in eq. 2 to arrive at the expression for the dose to organ k

H=B (A1) {A-A] ‘[{M(A)(i)(l—a’*’e—MN) + M(A) ela-2)aM{1_aNe-aa¥)}
+ M) (—)eMZ ele-i14 - gN-ivle—2dn+1)
WA Ao (88 efina aN-.-”e-M(m,))] G (40a)
where -
M(x) = (1 - ex3) ex4 - af ! (40)

The expectation of the dose is then given by

18



HH)=B(-A-1)(A —ATI[{MX)(%)(I—aNeJ—;N) + M(A) e(A-l)AN(l—aNe—AAN) CA

_le_ma(%)(e-u o244 MA@ e-18 - gNe-1an))

_I_EEE(A ~A)an (g-Ad _ o-NAA 4 MIA Y e-Ad —ae AAN})] (41)

To calculate the variance of the dose of the Discrete Autoregressive case, lake D2 of the

eigenvalue-eigenvector form of eq. 40a and find after manipulation

DH)) = o2 By Bk,ﬁu{/u(x) (”’") H-2) + M-1,,) Au-a)ANp(ﬂ,,,)}

lqupr

[40) 2] A-2) - M -l )| %

+ o} Z By Bk;?Z’:qu {MZ( )#muq{de‘ud) ~2aMe mde_)

ljmagp,.r

+e-2MaN g 2N o2 ] + M(}.)M(—uqﬂ'z-—e—(lmlm [de(m-l)d) — e -wdeia'ﬂ)
- aNe#deLalﬂ) + e(ﬂq~7~)ANa2NQa-2)] + A”(AM—#m)&fe‘(“"*l)AN
[de("‘rl)“) - aNe—ZANdC%"L)‘ aNel‘mANdf#) + e(#-—lldNaZNda“z)]
+ M~ )M(~prg)e a2t [de(#-ﬂk)d) - aNemdeJ;ﬁ) _ aNewanﬂ)

“1,,-1
Yo ¥ar G,Gr

l-x

e(Hati}AN g 2N -2 42a
relrerm)aN 2N f o -2))) Y (42a)
where
Ax)=1-al exaN (42b)
and
x - xN
Ofx) = (42)
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Comparison of the Discrete-Autoregressive Case to Highly Correlated Case

The Discrete Random and Highly Correlated cases have already been compared;
therefore, let us restrict our comparison of the Discrete Autoregressive case to the Highly
Correlated. Recall that a primary goal in this discussion is to determine how to choose the
mean and uncertainty in the case of constant input (Highly Correlated case) to match the
mean and uncertainty in the distribution of the actual case occurring in practice, which in.
this instance is presumed to be approximated by the Discrete Autoregressive case described
above. To do this, compare the formulae for the Highly Correlated case (egs. 11 and 12
for the body burden and eqgs. 13b and 13c for the dose) with the statistics formulae for the
Discrete Autoregressive case (egs. 38 and 39 for the body burden and egs. 41 and 42a for
the dose). Because of the complexity of these equations, let us resort to the expedient of

considering the two limits of Rapid and Slow Metabolism.
Rapid Metabolism Limit

In the limit of Rapid Metabolism, the expectation values of the body burden yj for

the Highly Correlated case and the Discrete Autoregressive case are found to be related as

_ £, -
ﬂyk, Au!oregres:ive) - |aM !+ cA(l—m—a)_(l -aV l) EC:EE(yk Highly Correla!ed) (43)

Details of this calculation are in Appendix E. So to force

E()'k. Autoregres:ivc) = E(,Vk, Highly Correlalcd) (44)

set ’
- N-1 Em _ N1 45
CHC=calQ +c,4(l—a)(1 aM-1) (45)
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which for large N becomes
CHC = —E"-'—— (46)

Now consider the uncertainty of the body burden in the Rapid Metabolism limit. In
this limit, it is shown in Appendix E that the uncertainties of the Highly Correlated case and

the Autoregressive case are related by

o2 o2 (1 - q2N-1)) i
Dz()’k, Au!oregrenive) _')_A‘ N I) Z(Yk. Highly Correlalcd) (47)
e 0'}( - a?)
So, to force
Dz()’t. Auloregrc.uive) = Dz(yt. Highly Correlaled) . (48)
set
2(1 _ ~2(N-1)
O—I?IC - o-i [az(N—l) + O¢ (1 a )J (493)
ax(1-a?)
which for large N becomes
e ~ —T_ (49b)

(1-a?)

To calculate the expectation of the dose H; in the Rapid Metabolism limit, let us
also assume that the decay is rapid, 100, i.e., let us assume AA >> 1. In Appendix E, the
expectations of the dose in the Discrete Autoregressive case and Highly Correllated case are

calculated for this limit. They are related by

HC H k, Highly Carrelaled) (50)

E(Hk, Aulorcgrenive) C

P

so that ¢4 = cyc forces equality.
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Now consider the uncertainty in the dose for the Rapid Metabolism and rapid decay
limit. In this limit, in Appendix E it is shown that the uncertainty in the Autoregressive

dose is related to the uncertaintiy in the Highly Correlated dose by

g,
qu. Aularegre::ive) =—4- qu Highly Correlaled) (Sl)
OHC

To force equality, set 04 = OHC.
Slow Metabolism Limit

In the Limit of Slow Metabolism for the radionuclide in question, the expectation
value of the body burden y; for Highly Correlated case is related to that of the

Autoregressive case by

L1 l—a” €
E(yk Auloregrt:.nve) ‘)[C (1 a) N — (1 CA(i" a) CHC (yk Highly Correlaxzd) (52)
as shown in Appendix E. To force
E(,Vk. Auraregre.uive) = E(_Yk, Highly Correlaled) (53)
requires that
N
_ Em 1l-a __ tm
CHC=CA cA(l—a)+N l—a(l cA(l—a))] (542)
which for large N approaches
Em (54b)

, CHC = (1 -a)
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Note that this is the same condition to force equality of the body burdens in this limit.
The uncertainty of the dose for the Highly Correlated case in the Slow Metabolism

(and decay) limit is related to that of the Autoregressive case by

H utoregressive =“—q£__2_'DH i rre 60
D( k. Autoregres ) GHC(I"a)m ( k, Highly Co lated) ( )

To force equality of the variance of the two doses requires that

- O 2
OHC = ) A (61)

Note that this differs from eq. 57 by the factor 2/(3!/2) . Thus to adjust oxc to force the
uncertainty of the Highly Correlated dose to match the uncertainty in the Discrete
Autoregressive dose, the uncertainty in the final body burdens will differ. However, note
that both formulae, eq. 57 and 61, contain the factor 1/[(1-a)(N'/2)]. These factors will

be discussed in the next section.
Discussion

One see by eqs. 18a and 18b that the expectation of the body burdens and doses,
respectively, in the Highly Correlated and Discrete Random cases are equal. Recall that in
the Highly Correlated case, every man in an ensemble of men samples the environment
once at the beginning of a T-year exposure. In the Discrete Random case, every man
samples the environment several times in the T-year time span with each sample being
independent of all others. So, averaged over the ensemble of men, in both cases one gets

the same average for body burden and for dose. In the Discrete Random case, the number

of samples is N times that of the Highly Correlated case.
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In comparing the Discrete Random case with the Highly Correlated case in the
Rapid Metabolism limit, egs. 21 and 23, one finds that the uncertainty in the body burdens
and doses, respectively, is the same in both cases, is proportional to the uncertainty in the
distribution of the radionuclide in the soil, and is independent of the number of samples
taken. In the Discrete Random case in which many samples per run are made, the Rapid
Metabolism has the effect of purging one sample from the system before the end of the next
time period. On the other hand, in the Slow Metabolism limit, the effect of each sampling.
persists for the duration of the run. In this limit, for the same uncertainty for the
radionuclide concentration in the soil for both the Discrete Random and Highly Correlated
cases, one finds that the uncertainties in the body burdens and doses in the Discrete
Random case is less than those of the Highly Correlated case by a factor of N2 and
(BN/4)12 respectively So, by sampling many times, for which the content of the sampling
persists in the system, the variance in the content of the system decreases by a factor of N.
The dependence of the uncertainty on N in the Slow Metabolism limit is analogous to that
of the standard error of the mean of N if N were to represent the number of samples used to
estimate the mean. Now, if one want to simulate the effect of the multiple samples in
situations in which the environment is sampled only once at the beginning of the run, one
may do so by decreasing the uncertainty in the soil distribution by N1/2 for body burdens
or (3N/4)172 for doses. That is, one can use the model in the constant input mode to
simulate a variable input of multiple samples if it is known that the multiple sampling
occurs in N discrete, equal time intervals. Note that the factor of 3!/2/2 arises from the
definition of dose as proportional to the time integral of body burden.

Now consider the Discrete Autoregressive case. The Discrete Autoregressive case
corresponds to real-world situations in which each man makes N successive samples of the
environment over the course (0,7T] of the simulation, but for which each sample is not
independent of the previous samples. Instead, each sample is correlated with the previous

sample with a correlation coefficient of &, correlated with the second previous sample by
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al, etc. An example might be that the man lives in an environment for which the
radionuclide contamination is a spatial function with small spatial vanation over the
distances of possible moves by the man. In this example, the function of spatial
contamination would have small scale, spatial noise associated with it. If the man moves a
small distance in this environment N times, his exposure could approximate the conditions
of the Discrete Auloregressive case. Aliernatively, in an occupational setting, N
reassignments during a working career in which each reassignment had some similarity.
with the previous assignment and some new additional features could also approximate the
conditions of the Discrete Autoregressive case.

As N becomes large, the expectation of the body burden in the Highly Correlated
case is a constant factor times the expectation for the Discrete Autoregressive case in both
the Slow Metabolism limit and the Rapid Metabolism limit. This constant factor is the same
in both limits and equals &y cyc! (1-a)~!. One finds this same constant factor in
comparing the expectation of the dose for the Highly Correlated and Autoregressive cases
in the Slow Metabolism and slow decay limit. In other words, the expectation of the body
burdens for both the Rapid and Slow Metabolism limits and of the doses for the Slow
Metabolism and slow decay limit for the Highly Correlated case can be made equal to the
expectations in the Discrete Autoregressive case if cyc is chosen o be &y (1-a)~1. For the
Rapid Metabolism and rapid decay limit, the expectation of the doses in the Highly
Correlated and Autoregressive cases are related by ca/cyc. So, the expectation of the dose
in the Highly Correlated case can be made equal to the expectation in the Autoregressive
case if cq is chosen to be cyc. In the Rapid Metabolism and rapid decay limit the initial
sample is the most important. However in the other limits, the initial sample c4 in the
Discrete Autoregressive case becomes increasingly unimportant as N gets large because ¥

(the correlation of the last sample with c4) is small for @ < 1. Hence, the mean of the noise

term in the sampling is the important factor in determining final body burdens. But because
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any noise introduced in any sampling persists into further time intervals, the mean of the
sampled noise is inflated by a factor of (1-a)~!.

In the Rapid Mclabolism limit for large values of N, the uncertainty of the body
burden in the Discrete Autoregressive case is equal to the uncertainty in the Highly
Correlated case multiplied by a factor of o oyc (1-a2)~172. One finds that oy, the
uncertainty in the first sample of the soil concentration, is unimportant in determining the
uncertainty in the body burden in the Discrete Autoregressive case. However, in the Rapid
Metabolism and rapid decay limit, the uncertainty of the dose in the Autoregressive case is
related to the uncertainty of the dose in the Highly Correlated case by the factor oa/oyc.
Hence gy is important to the dose in this limit. Also, see that for large N the asymptotic
expressions for the uncertainty in both the body burdens and doses in the Discrete
Autoregressive case in the Rapid limit is independent of N. The radionuclide activity taken
up in each to the N time periods is turned over before the end of the next period. Thus,
each sample’s impact on the final burden due to persistence of radionuclide burden is
minimal. So the uncertainty is independent of the number of samples. However, the value
of the radionuclide sampled near the end of the simulation depend on previous samples
because of the autocorrelation function a*. The uncertainty in the body burden for the
Discrete Autoregressive case is increased by a factor of (1-a2)-172 because of this reduced
independence. One can force the uncertainty of the body burden in the Highly Correlated
case to maltch the uncertainty of the Discrete Autoregressive case by adjusting the variance
in the original distribution so that oyc? is set to g2 (1-a2)-1. However, in the Rapid
Metabolism and rapid decay limit, the uncertainty in the dose is determined solely by the
uncertainty in the initial exposure oy.

In the Slow Metabolism limit for large N, the uncertainty in the body burdens and
doses for the Discrete Aultoregressivé case is equal to the uncertainty in the Highly
Correlated case multiplied by a factor of o¢ oxc-! [(1-a)(NV/2)]-! and

O Oyt [(1-a)(NVD]-1 [(2/(31/2)], respectively. Because of the Slow Metabolism,
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cach sampled radionuclide concentration persists in the body burden. This persistence
decrecases the uncertainty in the final body burden by the factor of N1/2, Again, Slow
Metabolism produces a dependence on N similar to that of the standard error. The effect of
the correlation of the samples from one time period to the next reduces the randomness
between time intervals and increases the uncertainty in the body burden by the factor of
(1-a)-1. To force the Highly Correlated case to match the uncertainty in the body burdens
or the dose in the Discrete Autoregressive case requires that one adjusts the uncertainty in_
the soil concentration so that oyc is set to o¢ [(1-a)(NV2)]-!1 or g¢ [(1-a)(N!/2)]-!
[2/(31/2)], respectively. The difference of a factor of 2/(31/2) between these two

expressions arises from the definition of dose as an integral of body burden.

Conclusion

The results of this paper indicate that the rate of metabolism has an important effect
on the uncentainty in body burdens of radionuclides and doses in situations in which the
exposure to the radionuclide changes over time in a stochastic way. Slow Metabolism
tends to reduce uncertainty relative to those situations in which the soil concentration is
sampled once and then held constant.

However, our results also suggest that if enough is known about the resampling
over the simulation period, then the uncertainty distribution for the single-sample, constant-
input case (Highly Correlated) can be adjusted so that simulations using constant inputs can
simulate the uncertainty of the body burdens or doses in the resampled (Discrete Random
or Discrete Autoregressive) cases. In particular, one needs to know the number of
resampling periods; they must be of equ‘al length. One needs to know or be able to estimate
the degree of autocorrelation between the successive exposures. Finally, an estimate of the

mean and uncertainty in the random portion of the exposure must be made. If these factors
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are all satisfied, both the mean and uncertainty of the soil exposure distribution can be
adjusted to reproduce the characteristics of the body burden or dose distribution resulting
from periodic re-exposure. For some statistics, such as expectations in the Discrete
Random case, both both body burden and doses can be simulated simultaneously. For
others statistics, either the body burden or dose can be reproduced but not both

simultaneously.

Appendix A. Properties of the Metabolic Transfer Matrix
The matrix A' defined by ICRP(1979) is a lower triangular matrix
a;=0 for i<j (A1)

whose diagonal elements are in the form

aji=-—-Uu;,- A (AZ)

where y; is the biological turnover rate of the radionuclide in the ith compartment. Thus, it

will be convenient to introduce a new matrix A of just the biological parameters defined by
A'=A-1A1 (A.3)
where 1 is the identity matrix. The jth eigenvalues of A" is denoted by A;j and is chosen so

that the jth eigenvalue of A'is -11j. Kercher (1983) discusses the solution of linear transport

models of the form of eq. | using eigenvalues and eigenvectors. Let us assume that the
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eigenvalues of A" are discrete (not degenerate) so that the eigenvectors of A' are linearly

independent. Denoting the jth eigenvector of A' as W, the eigen equation for A’ is
Ay =y (A-4)
Equation A.1 implies that the eigenvalues of A' are the diagonal matrix elements so that
Ai=— i A (AS)
which is substituted along with eq. A.3 into eq. A.4 to get

AW =-py (A.6)

Thus the eigenvectors of A are the eigenvectors of A’ and the eigenvalues of A are —;. -

Equation A.4 can be written as

A'Y=VYA (A7)
where ¥ is a matrix with elements ¥j; = y; and A is the diagonal matrix with diagonal
elements Aj; = Ai. Note that A;j = 0 fori #j. Because the eigenvectors of A’ are linearly
independent, V-1 exists and eq. A.7 implies

vl AY= A (A.8)

and in fact

¥AA )Y = AA) (A9)
and for A one finds
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vlav=q

where Q is the diagonal matrix with diagonal elements £ = - yj.and €2; = 0 for i#j.

Appendix B. Properties of Uncertainty Distributions

(A.10)

In this paper, we are interested in the uncertainty distribution of yr(f). Let us use

the usual functions to characterize the distribution, namely, the mean and standard

deviation. For a random variable X, take the usual definitions of the expectation function

E(X) or mean of X (Cramer 1955) such that E(X) has the properties
HaX + b)=aHX) + b

and

E(i a; X,-) =§:l ai BX)

i=1

where a and b are scalars. The standard deviation function D(X) is given by
DYX)=o? = H(X - BX)P) = HX ?) - EYX)

with the property

Dax + b)= |al D(X)

2

Use the result that if the random variables X; are independent then
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k k
E Xi)= H BX;) (B.5)

and

Dz(i a,-X,- )= k a,-2 DZ(X.-) (B6)
1

Appendix C. Calculations for the Discrete Random Case

To characterize the distribution of yy, take the expectation of eq. 14 to get

HyiT)) = e-”[eAT(- A-1)(1 - erd) i HC)) e-Ais G:L (C.1)

i=1

Let us assume that each sampling is independent but from the same distribution
(nonseasonal), hence E(C;) = cg where cg is the mean soil concentration with radioactive

decay removed. So eq, C.1 is simplified to

HydT)) = e‘lr[e"r(— A")(l —e“d) CR i e-Aid Gl (C.2a)

i=1

= e“'T[eAT(~ A1 -erd) cplers—e-advet) (1-ead]" G ]k (C.2b)

This expression simplifies to eq. 15 in the text.
Now let us consider the standard deviation for the Discrete Random case. Begin
with eq. 7b and employ the Discrete Random case assumptions outlined above so that eq.

7b becomes
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n N “
N= 3, Wyekl 3 Ci¥i G'I e-(bed)i ay (C.3a)
ji=1 i=1 {i-1)4

Z ‘{’k,e J jl Gy l—(_e—lﬂ::)k 2 C; ‘(Jv"")d‘ (C.3b)
ji=1 - j— i=1

Interchange the summations in eq. C.3b and take D? of both sides of the equation. Then

use eq. B.6 because the C; are independent. One finds

D¥yi) = ZDz [/2 Vi ey Gz(—l—_—e(i—ﬂd—) ‘7“1)4‘]2 (C.4a)
i=1 =1 (- 2;-4)

Using DX(C;) = og?, perform the sum over i in eq. C.4a, and also use eq. A.5to find

n
DYy = R e-2AT Y Wy Vpm e~ (41T ‘Pﬁl Yr G G,

jlmr=1
(1-e-1a)1 - e-tt) (1= el m)T) (C.4b)
Hj Hm (e-m+mm)a 1)

Rapid Metabolism Limit

Let us first consider the variance of the body burdens. In the Rapid Metabolism

limit, all y; are large such that g; A>> 1. In this limit, the expression in the curly brackets

in eq. C.4b approaches

{...)eq. cab— {uj" p-l e+ ) T (C.5)

so that eq C.4b approaches
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n n
D¥yx)—> 0B e 2AT Y [svkj Tl G,] > [Wim 13! Wil 6] (C.6)
Ji=1 mr=1

BN o—,%e-“T[—A" G]z (C.6b)
The square root of eq. C.6b is shown in the text, eq. 19.

Slow Metabolism Limit

Now consider the limit of Slow Metabolism. In this limit, all the y; are small so

Ui T << 1. First, let us examine the uncertainty in the body burdens. In this limit,

eq. C.4b goes to

D¥yi) - ofeAT z Yij Pim e i) T ‘f’ﬁl '1”,,:: G G,A2 T (C.7a)
A

Jlm,r=1

N oﬁe_urll;li(;f (C.7b)

The square root of eq. C.7b is shown in the text as eq. 24.
Consider next the uncertainty in the dose. In addition to the Slow Metabolism limit,

assume that AT << 1. In this limit, the variance of the dose in the Discrete Random case

(eq. 17) approaches

(C.8a)

i A*NIN-1N+1)

-1 -1
DYH,)— o Bij¥FBin'¥np¥imGm¥pq Gg 3

JAhpmag=1

> 0Z[B (;1531;6 (C.8b)

The square root of eq. C.8b is given in eq. 29.

Appendix D. Autocorrelation in the Autoregressive Model
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To give meaning to the parameter a introduced in eq. 35b, consider the

autocorrelation function defined for a random variable X; as

CoXoXens)  ElX, - X)) (Kess = BXoeo))
AL =X E(X - BX0)) (X~ BX)] (D-1a)

So, the autocorrelation function of the C; defined by eq. 35b is found by substituting eq.

36 into the definitions of the covariance and variance. For i>1

COV(C,,CHL) E{{a‘ l Cl - CA)+ z a‘"’ '—Em)}

=2 (D.1b)
i l+k _ ivk—j(p, ‘
{ Cl CA) + Z a (8 Em) ]
j=2 ’
Now note that since Cj is independent of &;
E{(Cl - CA)(Ej - Em)] =HC| - ca) Etej ~En)=0 (D.2)

So that for i>1

Cov(Ci,Cisx) = az"‘z*"E{(Cl -~ cA)Z] + }': al~ itk E{(ej -~ e,,,)z] (D.3a)

2

i
= qi-2+k O'} + 082 a2i+kz a¥ (D3b)
—2

(D.3c)

Following the same procedure, the variance for i > | is given by
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Va(C a2 [oi + of 9_1_"-_1} (D.4)

So
Q2i-2+k {02 + o? a %1 IJ
2
plik)= _;‘__‘1)“ = ot i> 1 (D.5)
az"zlol +op 2 - IJ
1-a?

The derivation for i =1 is even simpler

CovC1,Cr4x) = E{(Cl - CA){G"(Cl ~ca)+ lif al /(g - €M)}:| (D.6a)

=a* H(C,~caP] = ot ;f; (D.6b)

and
Var(C)) = 0} (D.6c)

So
p(1.k)= af (D.7)

Therefore, for all i and k one finds
pik) = at for i21, k20 (D.8)
Appendix E. Calculations in the Discrete Autoregressive Case

To calculate the uncertainty in the distribution of y; in the Discrete Autoregressive

case, begin with eq. C.3b, which is rewritten as

36



y{T)= i Yije A’Tlpl Gll——#—[cl eHA + z Cietiid :l

jl=1 j (E.1)
and substitute eq. 36 for C; to get
2 - —~e-HA
yd)= ), lPLje/l’TlPﬂl Gll e‘ [C) ena
Ji=1 J
N ' i _
+ Y |ale) + > ai e, |etid (E.2)
i=2 r=2
Then simplify by carefully interchanging summations and summing over i to get
“ - -uA —alVeuT
ylT) = 2 rjehT 'lelGll e [Cl “AI—GL
N 1 - aN—f+l ey,A(N—Hl) )
+ z £ elra
r=2 l - e“A

Take D2 of both sides of eq. E.3 and since all the random variables in eq.E.3 are

independent, apply eg. B.6 to get

% | —e-HA 1 - al ensT
DAy)=| Y, ¥ijekT ¥i' G €7 enp a e D¥C))
il =1 Hj 1-aqetd

N . . .
e-HA 1 gN-i*1 pup(N-ist)
+2 Dz(&')Lz iy edT ¥ G i LG ]Z
i=2 id = 1 H; l1-aers

(E.4)

Using DXC1) = 042 and D2(g;) = 02, perform the sum over i and this equation becomes

eq. 39.
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Rapid Metabolism Limit

In the limit of Rapid Metabolism, the expectation value of the body burden y; for

the Highly Correlated case, eq. 11, goes to
E(yk, Highly Correlaled) - e_)'T CHC [_A_l GL (ES)

whereas the expectation value for the Discrete Autoregressive case goes to
_ £ - -
E(yk, Aularegres:ive) — aN ! + _‘—m_—(l - a’V l)] e‘u Ca [—A 1 GL (E6)

ca(l-a)

These two equations are combined to produce eq. 43.
Now consider the uncertainty of the body burden in the Rapid Metabolism limit. In

this limit, as before, the uncertainty of the Hlghly Correlated case (eq. 12) approaches
D(yk. Highly Corrtlatcd) - e—l.T OHC [_A_l GL (E7)

and the uncenainty in the Discrete Autoregressive case approaches

o2 (1 - g¥W-1)

_A-l
YT [A-'GL,  (E®)

Dz(yk, Aulorcgrc:sive) — e-24T 0'} a2(N—l) +

Combining these two formulae one arrives at eq. 47 in the text
To calculate the expectation of the dose Hy in the Rapid Metabolism limit, assume

that the decay is rapid, too, i.e., assume AA >> 1. Then the expectation of the dose in the

Discrete Autoregressive case approaches
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HH,) - 5; (B (ca+A)"* Gl (E9)

and the dose in the Highly Correlated case in the same limit also approaches

HHy) —)CZ—C [B (ca+4)" G, E.10

These formulae can be combined to produce eq. 50 in the text.

Now consider the uncertainty in the dose for the Rapid Metabolism limit. In this

limit, eq. 42a approaches

Dz(Hl:. Au!oregressive) - 1’5‘ [B ("A“'A)V‘ GE (Ell)
A

just as the Highly Correlated case , eq. 13c, approaches

D(Hk. Highly Correlatcd) - % [B (-—A'Hl)—l GL (E.IZ)

These two equations combine to produce eq. 51.
Slow Metabolism Limit

In the limit of Slow Metabolism for the radionuclide in question, the expectation

value of the body burden y; for Highly Correlated case, eq. 11, approaches

7

E(yk, Highly Corrclaled) — e cuc T Gy (E13)
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and the expectation value of the body burden in the Discrete Autoregressive case, eq. 43,

approaches

N
- fn 112G () _ Em -AT ¢4 T Gy (E.14
E(ys, Auloregrc.mvc) - ca(l - ) + N 1-o (l (- a))]e CA ¢ (E. )

Use these equations to get eq. 54a.

To calculate the uncertainty in the body burden yj in the Slow Metabolism limit for.

the Highly Correlated case take the limit of eq. 12 to find, as before,
D(yk. Highly Correlaltd) - e—lT CHC TGI: (E 1 5)

and the limit for the Discrete Autoregressive case, eq. 39 becomes

o {N—l—(l )(l—a”+ 2a)}]
a} N2(1-ap 1-a?
o e-2M T2 G} (E.16)

1-aNP
D2()’k Auloregres::ve) ‘{ _‘L'

-

These two equations can be combined to produce eq. 55 in the text.
The expectation of the dose for the Highly Correlated case in the Slow Metabolism

(and decay) limit approaches

2
EHy., nighty Corretated) = cuc[B Gl Tz— (E.17)

and the expectation of the dose in the Discrete Autoregressive case approaches

2

i 2
(B GL L (E.18)

E(Hk. A ‘um reg rcs:ive)
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Use these two equations to produce eq. 58.
Recall that the uncertainty of the dose for the Highly Correlated case in the Slow

Metabolism (and decay) limit, egs. 13c and 30, approaches

2
D(H}. Highly Correlated) = Onc[B Gl Iz— (E.19)

and the uncertainty of the dose for the Autoregresseive case , eq. 42a, in this limit

approaches

Dz(Hk, Aulorcgre:sive) - “—o-g——'[B G]z 'L4 (E20)
(1-a 3N

Combining eq. E.19 and E.20, one gets eq. 60 which relates the uncertainties of the two

doses.
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